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Dark-green platy crystals of the new compound Ph3;04,Br1oClg (1)
have been obtained by rapid quenching of a lead oxide halide
melt. The structure of 1 (triclinic, P1, a = 12.1192(7) A, b =
16.2489(10) A, ¢ = 18.3007(11) A, o = 93.104(2)°, B = 95.809-
(2)°, y = 111.252(1)°, V = 3325.4(3) A%, Z = 2) can be viewed
as incorporation of [PbXg]*~ halide units (X = Br, Cl) into the
defect PbO matrix. The latter represents a two-dimensional [O,;-
Phso]*6* cationic layer of OPh, tetrahedra that can be derived from
the [OPD] tetrahedral layer observed in tetragonal PbO. The layer
consists of 22 symmetrically inequivalent OPb, tetrahedra and
represents the topologically most complicated arrangement of
tetrahedra known to date.

mixed halide systems such as—@r. However, these
systems are of particular importance because of the presence
of mixed lead oxychloride/oxybromide nanoparticles in
atmospheric aerosdlaind the discovery of lead oxyhalide
deposits on the pistons of failed aircraft engifétere we
report on the synthesis and structure o§:Rh.BrioClg (1),
a high-temperature phase in the PBRbCL—PbBL, system
that has been obtained by rapid quenching of lead oxyhalide
melt.

In a typical synthesis, 0.446 g (0.0020 mol) of PbO, 0.183
g (0.0005 mol) of PbBx and 0.140 g (0.0005 mol) of PhClI
were loaded into a platinum crucible and kept at 780or
1 hin air, followed by cooling to 685C at a cooling rate of
9 °C/min. The mixture was kept at 68%& for 15 min and
then cooled to 673C at a cooling rate of 1C/min, followed

Lead oxyhalides represent an important class of inorganic py cooling to room temperature over 2.5 h. The product

materials with possible applications as ionic conduétarsl
highly anisotropic nanomaterialsThey are also of great
interest from the viewpoint of environmental chemigtand
mineralogy? To date, detailed chemical and structural
information is available for pure oxychlorid&"> oxybro-
midef and oxyiodidé systems, whereas little is known about
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consisted of dark-green platy crystalsloPowder diffraction
patterns confirmed the presence of traces of another phase,
which we were not able to identify. The chemical composi-
tion was established by semiquantitative electron microprobe
analysis and crystal structure determination (see below). It
is of interest that cooling of the same mixture down to room
temperature at a lower cooling rate of a few degrees per hour
results in the formation of transparent yellowish crystals of
PO,(Br,Cl), with the structure of mendipite, BD,Cl.*"°
Thus, phasd is a metastable high-temperature phase that
can be obtained exclusively by rapid quenching of the lead
oxyhalide melt.

The structure of® is remarkable in many ways. It contains
31 symmetrically independent Phcations, 18 halide sites
statistically occupied by Br and CI ions, and 22 O
positions. The PY cations of the PbiPb30 sites have
mixed oxyhalide coordination witimO + nX anions (X=
Br, Cl), wherem andn range from 2 to 4 (PbO = 2.16—

2.58 A; Pb-X = 2.78-3.55 A). Among the Pb atoms, the
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) Figure 2. Topological structure of the [@Phsg]1®" 2D layer in the
Figure 1. Crystal structure of PO22X1s (a), the [PbX]*" octahedral structure of1 (a) and first coronas (local coordinations) of central @Pb
unit within the array of OPbtetrahedra (b), and the [@Plsg]'%* 2D layer tetrahedra (shown as black squares) (b). See the text for details.

composed from edge-sharing QRbtrahedra (c).

Pb5, Pb12, Pb21, Pb2®h25, Pbh28, and Pb30 sites are layer into the [Q;Phy]'®" layer observed iri, one has to
coordinated by two O atomsn(= 2), the Pb2-Pb4, Pb7, excise certain blocks of ORMetrahedra from the former.
Pbh9, Pb11, Pb13, Pb15, PbiPb20, Pb22, Ph26, Pb27, and This procedure is known for the PbO derivative structtifes
Pb29 sites haven = 3, and the Pb1, Pb6, Pb8, Pb10, Pb14, and has been applied to rare-earth oxychalcogerifdes,
and Pb16 sites have = 4. The Pb31 site is coordinated Sulfides!*and intermetallic and cluster compoufftiss well.
solely by X anions, being at the center of [P§X octahedral !N the structure ofl, holes in the 2D PbO matrix correspond
units [Pb31-X = 2.78-3.01 A]. All 22 O anions are 1o either single tetrahedra or2 2 blocks. The [@Phs]**
tetrahedrally coordinated by Pb cations, thus forming ~ cationic layers are parallel to the (102) plane and are
oxocentered ORfetrahedra. It is notable that OPfoieties ~ Separated by Xanions, which form square pavements with
are common in inorganic lead oxysa#&1° and have X—X distances of-4 A. The [PbX]* octahedra are located

recently been recognized as important building blocks in Petween the layers in such a way that memberedZholes

tribasic lead maleatg. in the PbO matrix are exactly above and below these units
The structure ofl (Figure la) can be described as (Figure 1b). . .
incorporation of [PbX]*~ halide units into a defect PbO  The lead oxide [@Phs]'*" block in the structure of is

matrix. The latter represents a two-dimensional (2D){0  remarkable in its exceptional topological complexity, which
Phyo] 26" cationic layer of the OPbtetrahedra (Figure 1c)  has no analogues among the known PbO derivatfes.
that can be derived from the [OPb] tetrahedral layer that hasconsists of 22 symmetrically independent QRtrahedra

been observed in tetragonal PEXT0 transform the [OPb]  that, in addition, play different roles in the topological
organization of the layer. To discuss the topology of the

9) lCZryls{agllsz%Eﬁic Ci%tz;4fgé(f(§§3328rlo<ig 3%%):7(tlrilc)li?&ic, P%S aloj tetrahedral layer in more detail, we shall use the approach
. i = . ’(: = . ﬂ = . - . . . -
(2, B = 95.809(2}, y = 111.252(13, V = 3325.4(3) &, Z = 2: first suggested in ref 10n. A single OPtetrah_edron is
crystal dimensions 0.1& 0.08 x 0.001; pcaica = 7.85 g cm3, u = symbolized by a square. Thus, the [OPb] layer in tetragonal

84.502 mmL, Data collection: Bruker SMART APEX CCD diffrac- ;
tometer, 33290 total reflections, 21 894 unique reflections, 8416 PbO corresponds toa 2D Iayer of black squares that fill the

unique reflections|Fo| > 40F,. The structure solved by direct methods plane without gaps and overlaps. In turn, tetrahedral layers
and refined to R} 0.066, wR2= 0.121, andS= 0.798 (anisotropic in the PbO derivative structures correspond to 2D arrange-

displacement parameters for Pb, Br, and Cl atoms). Semiquantitative P :
electron microprobe analysis provided the Br/Cl ratio as 12:6, which ments of black and white squares, where the latter Symb()llze

is close to that determined by structural analysis, taking into account vacancies. Figure 2a shows the 2D array of squares that

the high volatility of Cl under an electron beam. i
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Figure 4. Description of the topology of the [GPhsg]'6* 2D layer in the
structure ofl. OPh tetrahedra centered by the O1, O7, 08, and O10 atoms

Figure 3. Local coordinations of ORMetrahedra within the [@Phso] 16+ have the same first coronas (shown in blue). The second coronas (shown
2D layer in the structure of. Central tetrahedra are shown in gray, first in red) are different for the O10- and O7-centered tetrahedra; however,
coronas in blue, and second coronas in red. they are the same for the O1Pand O8Pb tetrahedra. The O1Rkand

O8Ph tetrahedra have different third coronas (shown in green). See the

given square by the adjacent squares, i.e., by all squares with®™! for details.

which it has common points. The arrangement of black
squares around the central square is designated the firs
corona® and we denote it aslp), wherep is a square
number. In turn, the second coron&3, is defined as a set
of black squares that surround the first corona, and so on.

All 22 symmetrically independent tetrahedra in thefO
bh;o] 16+ pblock have unique functions in the topology of this
unit. This topological complexity is exceptional and, as far
as we know, has not been observed in any ordered tetrahedral
structure. From the chemical viewpoint, the appearance of

Figure 2b provides the schemes of first coronas for all of . . . .
) ot such complexity should be ascribed to the incorporation of

the 22 tetrahedra present in the,fPlso]°" blocks. There : : . !
octahedral halide clusters into the metal oxide matrix that
are some coronas that are common for several tetrahedra.

For instance, the O1Rb O7Ph, O8Ph, and O10Pb induces modification of the latter in a complex way.

> . However, the model of black and white squares proposed to
tetrahedra have the same coronas consisting of six tetrahedr%escribe this level of complexity is rather simple. In

arranged around the central one in the same way. To further ", o . : . .
particular, it is especially suitable for modeling self-organiza-

investigate whether topological functions of the tetrahedra i f lex tonologi . lul ¢ ta that h
are different, one has to examine their second coronas. FigureIon of compiex topologies using cefiufar automata that have

3 demonstrates that, despite the fact that the first coronas Oiattracted much attention within the past few yefrs.

some tetrahedra are identical, their second coronas are ) ] )

different, and therefore the topological functions of the Acknowledgment. This work was financially supported
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